\(\int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx\) [12]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 223 \[ \int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx=-\frac {(a+b \arctan (c x))^2 \log \left (\frac {2}{1-i c x}\right )}{e}+\frac {(a+b \arctan (c x))^2 \log \left (\frac {2 c (d+e x)}{(c d+i e) (1-i c x)}\right )}{e}+\frac {i b (a+b \arctan (c x)) \operatorname {PolyLog}\left (2,1-\frac {2}{1-i c x}\right )}{e}-\frac {i b (a+b \arctan (c x)) \operatorname {PolyLog}\left (2,1-\frac {2 c (d+e x)}{(c d+i e) (1-i c x)}\right )}{e}-\frac {b^2 \operatorname {PolyLog}\left (3,1-\frac {2}{1-i c x}\right )}{2 e}+\frac {b^2 \operatorname {PolyLog}\left (3,1-\frac {2 c (d+e x)}{(c d+i e) (1-i c x)}\right )}{2 e} \]

[Out]

-(a+b*arctan(c*x))^2*ln(2/(1-I*c*x))/e+(a+b*arctan(c*x))^2*ln(2*c*(e*x+d)/(c*d+I*e)/(1-I*c*x))/e+I*b*(a+b*arct
an(c*x))*polylog(2,1-2/(1-I*c*x))/e-I*b*(a+b*arctan(c*x))*polylog(2,1-2*c*(e*x+d)/(c*d+I*e)/(1-I*c*x))/e-1/2*b
^2*polylog(3,1-2/(1-I*c*x))/e+1/2*b^2*polylog(3,1-2*c*(e*x+d)/(c*d+I*e)/(1-I*c*x))/e

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {4968} \[ \int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx=-\frac {i b (a+b \arctan (c x)) \operatorname {PolyLog}\left (2,1-\frac {2 c (d+e x)}{(c d+i e) (1-i c x)}\right )}{e}+\frac {(a+b \arctan (c x))^2 \log \left (\frac {2 c (d+e x)}{(1-i c x) (c d+i e)}\right )}{e}+\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2}{1-i c x}\right ) (a+b \arctan (c x))}{e}-\frac {\log \left (\frac {2}{1-i c x}\right ) (a+b \arctan (c x))^2}{e}+\frac {b^2 \operatorname {PolyLog}\left (3,1-\frac {2 c (d+e x)}{(c d+i e) (1-i c x)}\right )}{2 e}-\frac {b^2 \operatorname {PolyLog}\left (3,1-\frac {2}{1-i c x}\right )}{2 e} \]

[In]

Int[(a + b*ArcTan[c*x])^2/(d + e*x),x]

[Out]

-(((a + b*ArcTan[c*x])^2*Log[2/(1 - I*c*x)])/e) + ((a + b*ArcTan[c*x])^2*Log[(2*c*(d + e*x))/((c*d + I*e)*(1 -
 I*c*x))])/e + (I*b*(a + b*ArcTan[c*x])*PolyLog[2, 1 - 2/(1 - I*c*x)])/e - (I*b*(a + b*ArcTan[c*x])*PolyLog[2,
 1 - (2*c*(d + e*x))/((c*d + I*e)*(1 - I*c*x))])/e - (b^2*PolyLog[3, 1 - 2/(1 - I*c*x)])/(2*e) + (b^2*PolyLog[
3, 1 - (2*c*(d + e*x))/((c*d + I*e)*(1 - I*c*x))])/(2*e)

Rule 4968

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^2/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTan[c*x])^2)*(Log[
2/(1 - I*c*x)]/e), x] + (Simp[(a + b*ArcTan[c*x])^2*(Log[2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] + S
imp[I*b*(a + b*ArcTan[c*x])*(PolyLog[2, 1 - 2/(1 - I*c*x)]/e), x] - Simp[I*b*(a + b*ArcTan[c*x])*(PolyLog[2, 1
 - 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] - Simp[b^2*(PolyLog[3, 1 - 2/(1 - I*c*x)]/(2*e)), x] + Si
mp[b^2*(PolyLog[3, 1 - 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/(2*e)), x]) /; FreeQ[{a, b, c, d, e}, x] &&
NeQ[c^2*d^2 + e^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {(a+b \arctan (c x))^2 \log \left (\frac {2}{1-i c x}\right )}{e}+\frac {(a+b \arctan (c x))^2 \log \left (\frac {2 c (d+e x)}{(c d+i e) (1-i c x)}\right )}{e}+\frac {i b (a+b \arctan (c x)) \operatorname {PolyLog}\left (2,1-\frac {2}{1-i c x}\right )}{e}-\frac {i b (a+b \arctan (c x)) \operatorname {PolyLog}\left (2,1-\frac {2 c (d+e x)}{(c d+i e) (1-i c x)}\right )}{e}-\frac {b^2 \operatorname {PolyLog}\left (3,1-\frac {2}{1-i c x}\right )}{2 e}+\frac {b^2 \operatorname {PolyLog}\left (3,1-\frac {2 c (d+e x)}{(c d+i e) (1-i c x)}\right )}{2 e} \\ \end{align*}

Mathematica [F]

\[ \int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx=\int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx \]

[In]

Integrate[(a + b*ArcTan[c*x])^2/(d + e*x),x]

[Out]

Integrate[(a + b*ArcTan[c*x])^2/(d + e*x), x]

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 68.26 (sec) , antiderivative size = 1199, normalized size of antiderivative = 5.38

method result size
derivativedivides \(\text {Expression too large to display}\) \(1199\)
default \(\text {Expression too large to display}\) \(1199\)
parts \(\text {Expression too large to display}\) \(1202\)

[In]

int((a+b*arctan(c*x))^2/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/c*(a^2*c*ln(c*e*x+c*d)/e+b^2*c*(ln(c*e*x+c*d)/e*arctan(c*x)^2-2/e*(1/2*arctan(c*x)^2*ln(-I*e*(1+I*c*x)^2/(c^
2*x^2+1)+c*d*(1+I*c*x)^2/(c^2*x^2+1)+I*e+c*d)-1/4*I*Pi*csgn(I*(-I*e*(1+I*c*x)^2/(c^2*x^2+1)+c*d*(1+I*c*x)^2/(c
^2*x^2+1)+I*e+c*d)/(1+(1+I*c*x)^2/(c^2*x^2+1)))*(csgn(I*(-I*e*(1+I*c*x)^2/(c^2*x^2+1)+c*d*(1+I*c*x)^2/(c^2*x^2
+1)+I*e+c*d))*csgn(I/(1+(1+I*c*x)^2/(c^2*x^2+1)))-csgn(I*(-I*e*(1+I*c*x)^2/(c^2*x^2+1)+c*d*(1+I*c*x)^2/(c^2*x^
2+1)+I*e+c*d)/(1+(1+I*c*x)^2/(c^2*x^2+1)))*csgn(I/(1+(1+I*c*x)^2/(c^2*x^2+1)))-csgn(I*(-I*e*(1+I*c*x)^2/(c^2*x
^2+1)+c*d*(1+I*c*x)^2/(c^2*x^2+1)+I*e+c*d))*csgn(I*(-I*e*(1+I*c*x)^2/(c^2*x^2+1)+c*d*(1+I*c*x)^2/(c^2*x^2+1)+I
*e+c*d)/(1+(1+I*c*x)^2/(c^2*x^2+1)))+csgn(I*(-I*e*(1+I*c*x)^2/(c^2*x^2+1)+c*d*(1+I*c*x)^2/(c^2*x^2+1)+I*e+c*d)
/(1+(1+I*c*x)^2/(c^2*x^2+1)))^2)*arctan(c*x)^2-1/2*I*arctan(c*x)*polylog(2,-(1+I*c*x)^2/(c^2*x^2+1))+1/4*polyl
og(3,-(1+I*c*x)^2/(c^2*x^2+1))+1/2*I*c*d/(c*d-I*e)*arctan(c*x)*polylog(2,(I*e-c*d)/(c*d+I*e)*(1+I*c*x)^2/(c^2*
x^2+1))-1/2*c*d/(c*d-I*e)*arctan(c*x)^2*ln(1-(I*e-c*d)/(c*d+I*e)*(1+I*c*x)^2/(c^2*x^2+1))-1/4*c*d/(c*d-I*e)*po
lylog(3,(I*e-c*d)/(c*d+I*e)*(1+I*c*x)^2/(c^2*x^2+1))+1/2*I*e*arctan(c*x)*polylog(2,(I*e-c*d)/(c*d+I*e)*(1+I*c*
x)^2/(c^2*x^2+1))/(e+I*d*c)-1/2*e*arctan(c*x)^2*ln(1-(I*e-c*d)/(c*d+I*e)*(1+I*c*x)^2/(c^2*x^2+1))/(e+I*d*c)-1/
4*e*polylog(3,(I*e-c*d)/(c*d+I*e)*(1+I*c*x)^2/(c^2*x^2+1))/(e+I*d*c)))+2*a*b*c*(ln(c*e*x+c*d)/e*arctan(c*x)-1/
2*I*ln(c*e*x+c*d)*(-ln((I*e-c*e*x)/(c*d+I*e))+ln((I*e+c*e*x)/(I*e-c*d)))/e+1/2*I*(dilog((I*e-c*e*x)/(c*d+I*e))
-dilog((I*e+c*e*x)/(I*e-c*d)))/e))

Fricas [F]

\[ \int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )}^{2}}{e x + d} \,d x } \]

[In]

integrate((a+b*arctan(c*x))^2/(e*x+d),x, algorithm="fricas")

[Out]

integral((b^2*arctan(c*x)^2 + 2*a*b*arctan(c*x) + a^2)/(e*x + d), x)

Sympy [F]

\[ \int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx=\int \frac {\left (a + b \operatorname {atan}{\left (c x \right )}\right )^{2}}{d + e x}\, dx \]

[In]

integrate((a+b*atan(c*x))**2/(e*x+d),x)

[Out]

Integral((a + b*atan(c*x))**2/(d + e*x), x)

Maxima [F]

\[ \int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )}^{2}}{e x + d} \,d x } \]

[In]

integrate((a+b*arctan(c*x))^2/(e*x+d),x, algorithm="maxima")

[Out]

a^2*log(e*x + d)/e + integrate(1/16*(12*b^2*arctan(c*x)^2 + b^2*log(c^2*x^2 + 1)^2 + 32*a*b*arctan(c*x))/(e*x
+ d), x)

Giac [F]

\[ \int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )}^{2}}{e x + d} \,d x } \]

[In]

integrate((a+b*arctan(c*x))^2/(e*x+d),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \arctan (c x))^2}{d+e x} \, dx=\int \frac {{\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )}^2}{d+e\,x} \,d x \]

[In]

int((a + b*atan(c*x))^2/(d + e*x),x)

[Out]

int((a + b*atan(c*x))^2/(d + e*x), x)